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Abstract— A coding theory framework for related-key linear
cryptanalytic attacks on block ciphers is presented. It treats
linear cryptanalysis as communication over a low capacity
channel, and a related key attack (RKA) as a concatenated code.
It is used to show that an RKA, using n related keys generated
from k independent ones, can improve the amortized cost – in
number of plaintext-ciphertext pairs per key bit determined –
over that of k single key attacks, of any linear cryptanalysis, if k
and n are large enough. The practical implications of this result
are demonstrated through the design of an RKA, with k=5 and
n=7, predicted to produce a 29% improvement for DES attacks
that use an r-1 round approximation.

I. INTRODUCTION

Attacks that exploit the non-random behavior of symmetric-

key ciphers (such as linear or differential cryptanalysis) typi-

cally require a large number of ciphertext values to success-

fully estimate the key. Because of this, it is generally assumed

that changing the key often offers good protection against such

attacks. This is clearly true, of course, if the different keys

are independent. On the other hand, relationships among keys

can arise in a number of situations: when the random number

generators used in key generation are weak, or when the

adversary is powerful enough to control the relationship. While

formal models of block cipher cryptanalysis [15], [13], [9] and

of related-key attacks (RKAs) [1] exist, there is, however, no

model of the combination. In particular, it is not known how

the relationship among keys affects the success probability of

a statistical attack.

A more formal statement of the problem for the specific

case of the linear cryptanalytic attack is as follows. Consider

a single linear cryptanalytic equation of bias b, using N
plaintext-ciphertext (P/C) pairs to determine d bits of a single

key. Denote by ν(N) its amortized cost, in P/C pairs required

per key bit determined – i.e. ν(N) = N
d , and by ε(N) the

corresponding probability of error. It is well-known that error

decreases indefinitely only if N increases correspondingly. Be-

cause d is fixed, error decreases indefinitely only if amortized

cost also increases indefinitely.

ε(N) → 0 ⇒ ν(N) =
N

d
→ ∞ (1)

Now consider a set of linear cryptanalytic attacks using n
related keys, constructed from k independent ones. If n = k
and all k keys are independent, the best the adversary can do

is to launch k independent linear cryptanalytic attacks, and

(1) represents the behaviour of ν with N and ε(N) for each

independent key. When n �= k, however, and the adversary

uses N P/C pairs for each of the n related keys, is ν = Nn
kd

lower or higher or the same for a fixed value of ε? Are there

relationships among the keys for which it behaves one way

or another? ν measures the communication complexity of the

attack – that part of it that is online and requires an interaction

with the sender of the message. A significant change in it could

be of considerable importance.

This paper’s contributions are threefold.

• It presents a formal model for RKAs on block ciphers

that are already vulnerable to linear cryptanalysis. The

model focuses on attacks where r − 1 of the r rounds

are linearly approximated, and may be easily extended

to other types of statistical cryptanalysis and to stream

ciphers.

• It shows that the general RKA provides an asymptoti-

cally lower value of ν(N) than do k independent linear

cryptanalytic attacks. In fact, it shows that ν(N) can be
maintained at a constant, finite value while decreasing
ε(N), i.e. that

ε(N) → 0 and ν(N) � Λ (2)

are simultaneously possible, for some constant finite

Λ. While the values of k and N for which practical

improvements are seen depend on the particular cipher,

the fact that asymptotic values of ν can be finite does

not.

• It describes an RKA that provides a modest improvement

(a decrease of 29%) for DES with only a small redun-

dancy in keys (k = 5, n = 7). A larger improvement is

expected for a larger number of keys. It appears that this

RKA is general enough to be useful for other ciphers as

well.

Thus the results provide a means of designing new attacks on

block ciphers that are vulnerable to linear cryptanalysis. The

results also imply that, not only is changing the keys often

not sufficient to prevent against a statistical attack, but that,

with a particularly strong adversary or a particularly weak key

generator, it can be worse than using the same key, and prove

beneficial to the adversary. In coding theory terms, a single-

key attack is similar to a repetition code, but an RKA is similar

to a channel code and provides the associated improvement in
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communication efficiency to the adversary. With this general

premise, even in the absence of a strong relationship among

the keys, the techniques described here should be useful in

various other settings where key relationships are examined,

including ciphertext-only as well as non-linear cryptanalysis,

and stream cipher cryptanalysis.

II. THE APPROACH

The paper treats linear cryptanalysis as communication over

a very noisy channel, using a model of [3] extended to address

known-plaintext attacks and RKAs1. The message consists of

the d key bits determined using a single linear approximation

of the cipher. The cipher provides the encoding of the message

bits, and the randomness of the channel is provided by the

plaintexts used. A property of each of the N known plaintext-

ciphertext (P/C) pairs provides an N -bit received codeword.

The rate of the transmission is d
N . Because d is fixed by the

linear approximation used, it is not possible to maintain a

constant rate while increasing N . Thus it is not possible to

achieve the limits of the channel coding theorem [12] with a

single key attack, and, beyond a certain point, using the same

key repeatedly has the disadvantage of a repetition code. This

paper hence examines RKAs.

RKAs provide improvements in error performance similar

to those of channel codes. The paper shows that RKAs

correspond to concatenated codes, where the inner code is

defined by the linear cryptanalytic attack, and the outer code

by the relationship among the keys. It translates the wrong key
hypothesis [7] to an assumption in the model, which affects

the error-correcting properties of the inner code, and hence the

error performance of the single key linear cryptanalytic attack.

Using Forney’s constructions [4], the paper applies the

channel coding theorem [12] to the super-channel, consisting

of the single-key attack and its estimate, to obtain (2). Note

that Λ does not correspond to the channel capacity of the

linear cryptanalytic channel. That capacity cannot be achieved

because d cannot be increased indefinitely.

The theoretical result (2) obtained is asymptotic. To deter-

mine whether there would be sufficient decrease in ν for a

small enough value of k and n to make the attack practical,

a careful calibration of the error of the single-key attack,

and the error of the RKA, is needed. The paper uses a few

values from Matsui’s [10] first theoretical and experimental

results to represent the error of a single key attack as N is

increased. This value represents the probability of error for

the super-channel. Motivated by [4], the paper uses an outer

Reed Solomon code for the RKA, and obtains estimates of

improvement in amortized cost for DES over that of k single

key attacks.

III. RELATED WORK

Filiol [3] first suggested that a known probabilistic rela-

tionship – between C and a single binary property of K –

1Though it was later shown that the attack of [3] was not proven to be
valid for the AES as claimed, the core idea is very useful in characterizing
attacks.

be modeled as a communication channel. In his model, for

ciphertext-only attacks, the input to the channel is a single

binary property of fixed key K, denoted I(K) (the parity of a

few bits, say), see Figure 1. Its output is a bit of C, or the parity

Fig. 1. Filiol’s Channel Model [3]

of a few bits of C. The channel output is equal to the channel

input with a probability slightly greater than half. The property

may depend on the output, i.e. it could be an encoded bit of

the key with feedback. Each use of the cipher transmits the

same property over the channel, and corresponds to a repetition

code on the property. Our model shows that known-plaintext

cryptanalysis, approximating the cipher for r − 1 rounds, can

be used to generate several, distinct, encoded bits of the key.

[3] also describes how the same set of N received bits may

be decoded as a single repetition code of length N , or as n
codes of length N

n . While not explicitly described thus, this

is the decoding technique for a concatenated code, with an

inner repetition code of length N
n (over the property of the key,

I(K)), and an outer repetition code of length n (over the key).

[3] correctly indicates that, in this case, concatenation provides

no advantage, and that the most efficient decoding is one where

the received bits are treated as consisting of a single codeword.

[3] does not treat RKAs, and uses concatenation only for

decoding, not for the purpose of increasing the efficiency of

transmission across the cipher channel.

In other related work, Jakobsen [9] treats attacks on ciphers

whose properties can be modeled as polynomials of small

degree, and uses recent work in computational coding theory

to efficiently decode attacks. In particular, he proposes the list

decoding model, where the key estimate consists of a small

set of possibilities, as opposed to a unique estimate. RKAs

are not addressed in this model. The framework of Wagner

[15] describes more formally the techniques for obtaining the

probabilistic relationships among P , C and K. It models the

relationships as Markov chains, in the manner of [13], [14].

Our work models a relationship as a channel, which allows

us to address RKAs, and provides access to a rich literature

in coding theory. At the same time, our work allows, in a

very natural way, the use of Wagner’s model to determine the

communication channel, and the properties transmitted across

it.

Biham examines RKAs on block ciphers tracing the re-

lationships among the keys to the key scheduling algorithm

[2]. After demonstrating how RKAs lower the complexity for

specific block ciphers, he stresses the need for a careful design

of the key scheduling algorithm. Kelsey, Schneier and Wagner
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[5], [6] further present more RKAs on various other block

ciphers and demonstrate how real protocols can be exploited

to mount such attacks on them.

IV. OUR FRAMEWORK: SINGLE KEY ATTACKS

A. Preliminaries

We use notation very similar to that of Harpes, Kramer

and Massey [7], from where we also draw our description of

linear cryptanalysis. An r-round block cipher of block size q
consists of r rounds of application of a keyed round function

FK , a bijection, using a different round key K(i) for each

round. The key to the cipher consists of all the round keys:

K(1,2,..r) = (K(1),K(2), ...K(r)), where K(i) ∈ K, the round-

key space. Plaintext P and ciphertext C belong to Σq, the

set of all binary q-tuples. We consider the attack described

by Matsui [10] that uses approximations of r − 1 rounds of

the cipher, and then uses the round function itself for the rth

round.

In linear cryptanalysis, [10], [8], a single round of the cipher

may be approximated using a linear expression of the form:

Pr[h1(X) ⊕ h2(Y ) ⊕ h3(K) = 0] =
1
2
± γ (3)

where γ is positive, X is the round input, Y the output,

and K the round key, i.e. Y = FK(X), and h1, h2 and

h3 are linear or affine. The randomness is across plaintexts,

and not necessarily across keys. Through the repeated use of

approximations like (3) for r − 1 rounds, and the exact round

function F for the last round, one may obtain an expression

of the following form:

Pr[f(P ) = g(F−1
K(r)(C))] =

1
2
± b (4)

for some non-zero bias b and last round key K(r). The exact

value of the first-round function may also be used instead of

an approximation, and it is straightforward to see how our

model translates to this and other similar attacks.

To determine K(r), all possible values are tried, and the

right and left-hand sides of equation (4) computed for all N
P/C pairs. The sub-key chosen is the one that satisfies the

equation most often (or least often, to allow for the probability

of (4) being 1
2 − b). In addition, one bit of the rest of the

cipher key is also revealed through whether the sub-key chosen

satisfied the equation most or least often. The other bits of the

key may either be similarly determined, or determined by brute

force. Thus linear cryptanalysis reduces, by one-rth and one

bit, the length of the key that is to be determined by brute

force.

B. The Model

This paper views linear cryptanalysis as communication

across a very noisy channel. K(r), denoted K in Figure 2,

forms the message. The value of a binary property of K and

Cj , the jth ciphertext:

Ij(K) = g(F−1
K (Cj)) (5)

Fig. 2. Linear cryptanalysis as channel communication

is the jth codebit, and the codeword is:

α(K) = (I1(K), I2(K), ...IN (K)) (6)

The codeword itself is not accessible to the adversary. How-

ever, the set (f(P1), f(P2), ...f(PN )), of the binary property

f of the plaintexts, is, and, from (4), is a very noisy value of

the codeword (6). It hence provides the output of the channel.

The randomness of the channel is provided by the different

values of plaintext encrypted, and the channel flips each bit of

the encoding almost as often as not, i.e. with a probability

0.5 ± b. The channel is a binary symmetric channel with

probability of error 0.5± b, whose capacity may be estimated

using the second order term in the Taylor series expansion

(zeroth and first order terms are zero). We assume, as in [7],

that b is not significantly dependent on K, i.e. the channel is

identical for all keys. The process of determining the target

subkey from the values f(Pj) can easily be shown to be

maximum-likelihood decoding [11]. We further assume that

the small dependence between K and b does not affect the

maximum-likelihood estimation procedure [7]. This gives us

the following observation.

Observation 1: Linear cryptanalysis, using N P/C pairs
and a single linear cryptanalytic relationship, corresponds to
the transmission of K(r) across a communication channel of
capacity C � b2

0.34 , using the encoding α(Kr) of length N ,
and maximum-likelihood decoding.

C. The Encoding

Experimental reports of linear cryptanalysis imply that

α(K) typically contains enough information to accurately

determine K(r). A formal statement of the assumption that

this is true is frequently made in the form of the wrong key
hypothesis [7] which states that, for an incorrect key, Ij(K)
is close to as likely to be represented by f(Pj) as not. In

our model, we incorporate an assumption that we show is

equivalent to wrong key randomization, examine the error-

correcting behavior of α(K) under this assumption, and relate

it to a property of the cipher.

Recall that the randomness of the channel, whether repre-

senting the entire cipher or a single round, is provided by the

plaintexts used. Hence, given a fixed key, there is a partition

of the plaintext space, into those plaintexts for which the last
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round approximation, of the form (3), is true, and those for

which it is not, denote these by PK and PK respectively. Note

that the noise in the channel is “0”, when P ∈ PK , and “1”

otherwise.

Definition 1: For round key K, PK is the set of all rth-round
input for which h1(X) ⊕ h2(Y ) = h3(K) is true.

We denote by (P1,K) ↔ (P2,K
′) that P1, with key K,

and P2, with key K ′, represent the same value of the noise

bit for the channel, i.e. the last round approximation (3) is

either true for both or untrue for both. The following lemma

holds.

Lemma 1:
h3(K) = h3(K ′) and (F−1

K (Cj),K) ↔ (F−1
K′ (Cj),K ′)

⇒ Ij(K) = Ij(K ′)
Proof: (F−1

K (Cj),K) ↔ (F−1
K′ (Cj),K ′) implies that the

value of h1(X)⊕h2(Y )⊕h3(K) is the same for both values

of K. Further, because h3(K) = h3(K ′), and h2(C) is the

same for both K and K ′, this implies that h1(X) is also the

same for both values of K. The value of X itself is different,

but h1(X) is not. Further, note that h1(X) = I(C,K), hence

Ij(K) = Ij(K ′). 	
Similarly,

Lemma 2:
h3(K) �= h3(K ′) and (F−1

K (Cj),K) !(↔) (F−1
K′ (Cj),K ′)

⇒ Ij(K) = Ij(K ′)
Proof: Clear. 	

If Ij(K) = Ij(K ′) too often, α(K) will not differentiate

well between K and K ′. This motivates the following assump-

tion and Theorem:

Assumption 1: Given any two K, K ′, such that K �= K ′,
and C chosen uniformly at random,

|Pr[(F−1
K (Cj),K) ↔ (F−1

K′ (Cj),K ′)] − 1
2
| ≤ δ

where δ is small.
Theorem 1: Assumption 1 is equivalent to the wrong key
randomization hypothesis.

Proof Sketch: For distinct K, K ′, let Pr[(F−1
K (Cj),K) ↔

(F−1
K′ (Cj),K ′)] = 1

2 + c. Further, let K be the right key, and

K ′ a wrong key. Wrong key randomization is equivalent to:

|Pr[f(Pj) = Ij(K ′)] − 1
2 |

|Pr[f(Pj) = Ij(K)] − 1
2 |

<< 1

⇔ |( 1
2 ± c)( 1

2 + b) + ( 1
2 ∓ c)( 1

2 − b) − 1
2 |

b
<< 1

⇔ b|c|
b

= |c| << 1

	
For a “good” round function, δ = 0, so that the channel is

completely independent of the key. As one might expect from

Theorem 1, the error-correcting behavior of α depends on δ,

and, in particular, a “good” round function results in a more

efficient attack.

Theorem 2: limN→∞
min dist(α)

N = 1
2 − δ, where

min dist(α) is the minimum distance of the code α. Hence,
a smaller value of δ results in a lower attack error.

Proof Sketch: Straighforward. 	

V. RELATED KEYS AND CONCATENATION

Consider an RKA, where k independent keys are used to

generate n related keys. Suppose the function used is

H : Kk → Kn

H(L1,L2, ...Lk) = (K1,K2, ..Kn)

Each related key Ki can be used for a linear cryptanalytic

attack, to produce a key estimate, Kest,i. The relation among

the keys may then be inverted in some manner.

A. Related-Key Attacks as Concatenated Codes
Theorem 3: The RKA described above is a concatenated code
over the cipher channel.
Proof Sketch: H is the outer code, the inversion procedure is its

decoding. α(K) with maximum-likelihood decoding forms the

inner code. The key estimates of a single linear cryptanalytic

attack, Kest,i, form the output of the super-channel, whose

input consists of the related keys Ki, and probability of error

is that of the single-key attack. 	
Figure 3 shows such an attack.

Fig. 3. Related-key Attacks as Concatenated Codes

B. The Existence of an Efficient RKA
Consider any error value, e, reasonably small, corresponding

to an amortized cost of N
d in a single key attack. Assuming

that the super-channel is symmetric, let its capacity be CS(e).
(For small values of e, CS(e) is close to unity). This gives us:

Theorem 4: ε(N) → 0 and ν(N) � Λ, for all Λ ≥ N
dCS(e) is

possible, where N
d ≥ 0.34

b2 .

Proof: Follows from the application of the channel coding

theorem to the outer code and the super-channel with capacity

CS(e). 	
Theorem 4 implies that, while it is possible to transmit

efficiently, one may not be able to transmit at the capacity

of the inner channel if the inner code is bad, even if the outer

code is good. Because the inner code has a finite number of

message bits, it is not, in general, a good code.
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C. Construction of a Good RKA

Forney’s constructions of concatenated codes motivate the

use of RS codes as the relationship among the keys. Forney

uses an RS outer code with a good inner code to reduce

error indefinitely while maintaining any rate smaller than

channel capacity ( b2

0.34 in this case). A similar attack, with

N � 0.34d
b2 P/C pairs in each of the n single-key attacks,

and n only slightly larger than k (as large as required by

super-channel capacity, CS(e)), cannot be used to indefinitely

decrease linear cryptanalytic error while maintaining rate at

inner channel capacity, because the inner code is unable to

maintain rate while decreasing error. It should provide some

improvement, however, and we show that it can provide a

reasonable improvement over single key attacks on DES.

D. The Good RKA is Practical

To examine the improvement in amortized cost provided by

the RKA that uses an RS code for the relationship among keys,

one needs an expression for the error of the single-key attack

in terms of N , d and b, and of the RS code in terms of d,

k, n, and super-channel error, i.e. the error of the single-key

attack. Expressions for outer code error in terms of super-

channel error are well-known [4]. The expressions for single-

key attack error would generally depend on the attack itself.

We use Matsui’s theoretical and experimental values for the

linear cryptanalytic attack on DES that uses approximations

for r − 1 rounds [10]. In this case, d = 7. [10, Table 3]

predicts estimation accuracies of 48.6%, 78.5%, 96.7%, and

99.9% for N = 2
b2 , 4

b2 , 8
b2 and 16

b2 respectively.

We construct various RKA attacks using RS outer codes

and the above single-key attacks as inner codes. For these

attacks, we obtain amortized cost estimates, requiring each of

the k keys to be determined at an accuracy level of 99.9%.

We then observe the factor by which 16
b2 , the cost for k single

key attacks each achieving a 99.9% accuracy, is larger than the

amortized cost of the RKA, call this ratio τ . Larger values of

τ imply a greater improvement in amortized cost. We observe

the following:

• An upper bound on τ corresponds to the RKA achieving

inner channel capacity. The upper bound is about 6.75.

• N = 8
b2 and the (7, 5) RS code over GF (23) (three

groups of three bits each are encoded with the outer code)

gives τ = 1.43.

• N = 4
b2 , and the (127, 65) RS code over GF (27) gives

τ = 2.

Matsui also reports experimental accuracies of 0.88 and 0.99
for N = 4

b2 and 8
b2 respectively. Using these values, we

observe that an attack with N = 4
b2 and the (127, 99) RS

code over GF (27) gives τ = 1.6, and that the upper bound

on τ , corresponding to inner code channel capacity, is about

3.4.

Larger values of τ would be obtained if larger values of n
were acceptable, or if larger accuracies were desired.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a model for RKAs that treats the RKA

as a concatenated code. We have shown that RKAs can

asymptotically achieve lower amortized cost than an equivalent

set of many single-key attacks, and that this result does not

depend on specific properties of the cipher, but simply on

the fact that it is vulnerable to linear cryptanalysis. We have

described an RKA expected to increase the efficiency of the

linear cryptanalytic attack on DES for a small number of

related-keys.
A number of future directions present themselves. First and

foremost, an implementation of the RKA on specific block ci-

phers would indicate whether it is practical, and, if so, on what

types of ciphers. Second, an implementation of similar attacks

on stream ciphers would be interesting. Third, an examination

of RKAs within the list decoding framework [9] might result

in more efficient attacks, and could also provide insights into

what types of round functions are resilient to such attacks.

Fourth, an examination of key scheduling algorithms in this

framework could be very interesting. Finally, other attacks,

such as ciphertext-only and higher-order approximation attacks

are also expected to lend themselves well to study in this

framework.
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