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Measure of goodness of a set of color-scanning filters
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Accurate scanning of a color image, which is absolutely essential for good color reproduction, can ensure that all
relevant information about the color stimulus of a signal is obtained. The set of scanning filters is hence an

important component of a color reproduction system.

In this paper we introduce a measure of the goodness of

a set of color-scanning filters. This measure relates the space spanned by the scanning filters to the human
visual subspace. The g factor of a single color-scanning filter is shown to be a particular case of the measure.
Experimental results are presented to justify the appropriateness of the measure.

1. INTRODUCTION

The purpose of color-scanning measurements is to record
accurately some physical properties of a signal. This
characterization is often used to reproduce a color image
on a display or printer. Since the reproduction is viewed
by a human observer, the measurements can be limited to
those properties that permit the creation of an image that
will appear the same as the original. The CIE has tabu-
lated color-matching functions for this purpose. These
functions are used as filters for the measurement of radi-
ant sources. For reflective or transmissive sources, the
functions together with an illuminant are used to take the
necessary data.

It is well known that the scanning filters need not be
exact duplicates of the color-matching functions but need
be only a nonsingular transformation of them. This fact
is used in determining the filters used in television and
other optical applications. While the CIE color-matching
functions are well defined, it is not always possible to du-
plicate the filters or a linear combination of them with
various filter materials. The inclusion of an illumination
spectrum in the light path makes the fabrication of scan-
ning filters more difficult. In this paper we address the
problem of determining how well a set of filters permits
accurate measurement of color. The basis of this mea-
sure is the relation between the vector space defined by
the human visual system that is determined from the CIE
color-matching functions and the vector space defined by
the scanning filters. The vector-space approach has re-
cently found many applications.!”®

Most current research in color systems assumes that the
visual frequency spectrum can be represented adequately
by samples taken approximately 10 nm apart over the
range 400-700 nm. Integrals are approximated by sum-
mations, and the infinite-dimensional Hilbert space of
visible spectra with the usual 2 norm is reduced to an
N-dimensional Hilbert space, where N is the number of
samples (in this case N = 31). A continuous function of
wavelength is represented by an N vector of its sampled
values. Hence in this paper visual spectra will be treated
as vectors in an N-dimensional Hilbert space. Thus
the CIE color-matching functions are represented by
N vectors, a;.
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The characterization of color must include the effect of
the illuminating source. The CIE tristimulus values are
measured with respect to some illuminant 1. This illumi-
nant is incorporated into the color-matching functions by
the use of a diagonal matrix, L, such that L; =1;. The
subspace spanned by the set of vectors {La,}., is defined
as the human visual subspace (HVSS) for the illuminant 1.
It is noted that accurate calculation of the tristimulus
values is possible only if the space spanned by the color-
scanning filters includes the HVSS for the illuminant 1%
The proposed measure of goodness is related to the projec-
tion of the space defined by the filters onto the HVSS.

The paper is organized as follows. Section 2 deals with
the preliminaries of the vector-space approach to color
systems® and the limitations of Neugebauer’s q factor as a
measure. The requirements of a measure of goodness are
defined in Section 3. The analysis of an error measure
leads to the measure of goodness in Section 4. It is pos-
sible that a set of three scanning filters that spans the
HVSS is not realizable because of some practical limita-
tions of the fabrication process. In such a situation, it is
necessary to look for a set of four or more scanning filters
that does span the HVSS. A perfect set of four scanning
filters is presented in Section 5. It is demonstrated that
the q factor of a single filter is not a good indicator of the
appropriateness of the filter as a member of a set of more
than three color-scanning filters. Experimental results
comparing actual filter-set performance with the measure
of goodness are presented in Section 6. The experiments
are simulated on color ensembles from a thermal printer,
an ink-jet printer, a color copier, and a 64-sample set of
Munsell chips. The results demonstrate the appropriate-
ness of the introduced measure. The measure is seen to
be a good indicator of average mean-square error and av-
erage error in L*a*b* space for the signal ensembles used.

2. PRELIMINARIES

The notation in this paper follows that of Trussell.! Let
S =[s; s: s3], where s;,s; and s; are N vectors that
represent the color-sensitivity functions of the three types
of cone in the eye. Let A=[a, a, a3]and P =
[p: p: ps), where a; and p;(i = 1,2,3) are N vectors
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representing the CIE matching functions (often referred
to as [x y z]in the literature) and the corresponding
CIE primaries (often referred to as [X Y Z]in the lit-
erature), respectively. The matrix P is defined by the
equation ATP =I' and is not unique. The set {a,}.,
denotes the set of matching functions; {m,}/., denotes any
set of r scanning filters, and M denotes the matrix of
scanning filters, M = [m, m,...m,]. The range space
of a matrix X is the span (set of linear combinations) of its
column vectors and is denoted R(X). Hence R(M) denotes
the set of linear combinations of the scanning filters.
Note that since the CIE color-matching functions repre-
sent the same vector space as the sensitivity functions of
the cones, R(A) = R(S).

Consider a reflectance spectrum f, viewed under an il-
luminant 1. The reflectance spectrum f is seen as Lf,
where L is a diagonal matrix such that L; =1,. For a
perfect color match between signals f and g, as viewed
under illuminant 1, STLf = STLg, which is equivalent to*
ATLf = ATLg, or (LA)"f = (LA)"g. Let the matrix A,
denote the matrix product LA. Then AJf = Alg, and
the spectrum g is known as a metamer of f under illumi-
nant 1. The visual stimulus of a signal is determined
uniquely by its projection onto the subspace that is
spanned by the set of vectors {La,}’.,. This subspace is
defined as the HVSS for the illuminant 1 and can be de-
noted R(LA). The projection of f onto the HVSS for 1 is

Pyf = A (ATA,)'ATS (1)

and is also called the fundamental of f with respect to the
illuminant 1?. It can be shown that the fundamental with
respect to a particular illuminant represents completely
the visual stimulus of the signal with respect to that illu-
minant'® and that

Pyf=Pg Alf=Alg. (2)

Color reproduction begins with correctly determining the
fundamental or the projection of a given spectrum onto
the HVSS. A perfect set of scanning filters is one whose
measurements give the tristimulus values of the signal
under a linear transformation. Equivalently, a perfect
set of scanning filters determines the fundamental of the
signal, and, also equivalently, a perfect set of scanning
filters is one whose span includes the HVSS. The set
{La,;}}., is a perfect set of scanning filters and a basis for
the HVSS, but it is not the only one.

A number of problems arise in the implementation of a
scanning system that obtains the required projection of f.
In particular, it is difficult to construct a designed scan-
ning filter exactly, and any errors in filter construction
will change the space spanned by the filters, resulting in
an error in the measurement of the required projection.
This error will lead to an error in the reproduction. No-
tice that this error will occur even if the measurements are
noise free in all other respects. In an attempt to measure
the goodness of a color-filter with respect to such an error,
Neugebauer’ defined the quality factor, or q factor, of a
color filter. If m represents a color filter and Py(m) its
orthogonal projection onto the HVSS, the g factor of m is
defined as

_ IPy(m)|?

q(m) = —“;“rv 3
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where |- || is the 2 norm in N-dimensional vector space.
Notice that 0 = g(m) = 1, and the closer the value of g(m)
to unity, the better the color-scanning filter m. If the
value of g(m) is small compared with unity, the filter mea-
surement does not give much information about the fun-
damental of the measured signal, and hence the filter is
not appropriate for color scanning. The g factor seems to
be a reasonable quality measure for filters not in the
HVSS, because |[m|*[1 - q(m)] is the square of the
Euclidean distance of m from the HVSS. If any one of a
set of three scanning filters {m,;}’.; is not in the three-
dimensional HVSS [i.e., g(m,) # 1 for some i], then
R(LA) # R(M), and {m,}’., is inaccurate for color sensing.
A major disadvantage of the g factor is that it is designed
to be used with only a single filter. A measure that ex-
tends the idea of the g factor to judgment of the effective-
ness of a set of color-scanning filters would be useful.

In most existing scanning systems, only three scanning
filters are used. Three linearly independent scanning fil-
ters span the three-dimensional HVSS if all three have
unit q factors. Hence the g factor indicates a perfect set
of filters if q(m;) = 1 for every i and the m; are linearly
independent vectors. It does not indicate whether the
three filters are linearly independent, nor can it assist in
differentiating among imperfect sets of filters. Hence
the g-factor cannot be used by itself to indicate a “better”
imperfect set of filters. Another disadvantage of the
q factor is that it may be used to judge at most a set of
three filters.

There are at least two reasons that more than three fil-
ters may be used to improve the quality of the color repro-
duction. First, in many cases, three parameters are not
enough to define sufficiently the visual stimulus of an
N-dimensional signal for color correction. Typically, such
a situation arises when the color reproduction is to be
viewed under two different illuminants. In such a case,
as many as six parameters (representing the projections
of the signal onto the two different three-dimensional
HVSS’s defined by the two different illuminants) may be
required for accurate representation of the signal.®
Second, the constraint of constructability on the filters
might imply that no set of three constructable filters can
span the HVSS, although a set of four filters could be con-
structed so that the required projection would be obtained.
When more than three parameters (four scanning filters,
for example) are necessary, the q factor is not an effective
measure of the goodness of even each single filter as part
of the set of more than three filters. For example, suppose
that {m}{., is a set of scanning filters. It is possible that
the HVSS is contained in the span of the set of four fil-
ters, i.e., that

R(M) 2 R(A.), 4)

but ¢(m;) <1 for i =1,2,3,4. Such a set could provide
perfect color scanning, although the individual ¢ factors
would not indicate this. An example of such a set is pre-
sented in Section 5.

The performance of a set of filters can be judged by the
reproduction quality of a set of signals. Usually this set
of signals is chosen so as to represent the ensemble of
signals on which the set of scanning filters is to be used.
The average error in the reproduction is often used as an
indicator of the goodness of the set of filters. The ¢ factor




P. L. Vora and H. J. Trussell

of a color-scanning filter has the disadvantage of not
being a good indicator of the perceptual error in color
reproduction.

As discussed above, the g factor has three major disad-
vantages. First, it measures a single filter independently
of other filters in the scanning set. A measure that ex-
tends the idea of the ¢ factor to include judging the effec-
tiveness of a set of color-scanning filters would certainly be
useful. Second, the q factor can be used to judge the merit
of a single filter as part of a set of three filters in a limited
sense, because it indicates a perfect set of three filters
only when they are linearly independent. The ¢ factor
itself does not indicate linear independence for a perfect
set of filters, nor does it differentiate among imperfect
filter sets. Third, the q factor is not useful for judging the
merit of a single filter as part of a set of more than three
filters. It is possible, however, to develop a measure that
overcomes these disadvantages. In Section 3 we discuss
the requirements of an effective measure, and in Section 4
we present such a measure. We also discuss the relation-
ship of the proposed measure to the g factor.

3. REQUIREMENTS OF AN EFFECTIVE
MEASURE

If a set of scanning filters is linearly independent, the
measurements produced (the values of m[f) will be non-
redundant and can be used for projection of the measured
spectrum onto the space spanned by the scanning filters.
If these filters are not linearly independent, not all mea-
surements are necessary for finding the projection onto
the space spanned by the filters. In this case the extra
measurements may help to eliminate noise in the scanning
process. Ineither case, a measure of goodness of the filter
set is related to the space spanned by the scanning filters
and to the relation of this space with the HVSS. The
measure should not be related to the noise performance of
the filters, as it should measure performance of the filters
with respect to an error that occurs independently of any
additional measurement noise. An effective measure of
the goodness of a set of scanning filters should satisfy the
following conditions: First, the measure should depend
only on the space spanned by the scanning filters and not
on particular, individual filters. For perfect scanning,
the HVSS should be contained in the space spanned by the
scanning filters, as indicated in expression (4). Hence a
second requirement is that the measure indicate a perfect
set of scanning filters. When the scanning is not perfect,
the measure should distinguish among filter sets accord-
ing to the goodness of the approximation to projections in
the HVSS. Third, the measure should be generalizable to
an arbitrary number of filters and an arbitrary reproduc-
tion space.

Let {v;};-, denote a set of vectors that define the space to
be spanned (typically the HVSS). This space is denoted
R(V), where V =[v, v,.. .v,]. We must note here that
R(V) need not be three dimensional; for example, effective
color correction requires the projection onto a space of
dimension greater than three."* The dimensions of R(V)
and R(M) may not be equal; a large set of filters {m,}.,
may be used to ensure the spanning of R(V).

A measure that immediately comes to mind is the
dimension of the intersection of R(M) and R(V). On
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closer examination this measure is found to be too coarse.
It takes on only integer values and does not distinguish
well enough between good and not-so-good sets of scanning
filters. This problem is illustrated in Fig. 1 for a hypo-
thetical three-dimensional spectral space with a two-
dimensional HVSS. The spaces spanned by two different
sets of scanning filters are shown. It can be seen that the
projection onto R(M,), denoted Pyf, is a better approxi-
mation to the fundamental, denoted Py f, than is the pro-
Jjection onto R(M,), denoted Py:f. This is not indicated
by the dimension of the intersection of the spaces with the
HVSS; in both cases this dimension is 1.

For an example of this problem in an N-dimensional
space, consider the space spanned by the N vectors

v; = [1,0,0,0,...,0]7,

v, =[0,1,0,0,...,0]7,

v; = [0,0,1,0,...,0]” 5)
as the space to be spanned. Let the N vectors

m, = [1,0,0,0,...,0]7,

m. = [0,0,1,0,...,0]7,

m; = [0,0,0,1,...,0]7 6

be the scanning filters. The dimension of the intersec-
tion, R(V) N R(M), is 2. Now suppose that

ml’ = [1,0,0,0,- .. 70]T)
m,’ = [0,0.95,0,0.05,...,0]7,
m,’ = [0,0,10,0,...,0]7

is aﬁother set of scanning filters. The dimension of the
intersection is also 2, but the second set will provide much
more information about the required projection (for ex-

Fig. 1. R(M,) is closer to the HVSS than is R(M,).
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ample, information about the second coordinate of the
signal can be obtained more reliably from the second set
of scanning filters than from the first). A measure is
needed that will distinguish between such sets of filters.

The problem of finding a measure of the goodness of a
set of scanning filters is directly related to the error asso-
ciated with such a set in the absence of any additional
noise. The error is defined as the difference between the
required signal and the signal obtained with the scanning-
filter set. This error depends on the particular reflec-
tance vector f that is being measured. As the human eye
is sensitive only to errors in the HVSS, the error may be
defined as the difference between the actual and the re-
constructed fundamentals. It is common to consider an
average error over some well-defined set of reflectance
spectra, {f,}. Among the many error measures that one
may use to judge the performance of a filter set are the
mean-square error in N space, the mean-square tri-
stimulus error, and the mean-square error in a uniform
color space such as the CIE L*q*b* space. The mean-
square error and the mean error in CIE L**b* are studied
in this paper. The mean-square error in N space will
now be related to an error measure that has the desired
properties.

4. AN ERROR MEASURE AND A RELATED
- MEASURE OF GOODNESS

Two major error measures are often used in the evaluation
of color reproductions: mean-square error, and mean
L*a*b* error. In either case, the mean error indicates an
average over a particular data set and is hence dependent
on the data set. The problems of correlating mean-square
error with perceptual error are well known. The mean-
square error is addressed because it is easy to manipulate
and because its analysis provides valuable insight into
the problem of reproduction errors that are due to filter-
construction errors. The mean AE,, error measure is
far more difficult to analyze and manipulate but is a valid
measure of perceptual error. While there are cases in
which color estimates may have low mean-square errors
and high AE\,, errors and vice versa, the average of the
errors over a data set are generally in qualitative agree-
ment, as is demonstrated in Section 6.

Before an error expression can be obtained, some nota-
tion needs to be established. Let an orthonormal basis for
R(V) be defined by N = [n, n;...n,] such that R(N) =
R(V) and

NN =1. (7

Such a basis may be obtained by the Gram-Schmidt or-
thogonalization procedure.® The number of orthonormal
vectors, a, is the rank of {v;}{.;, and « equals s if {v;}{., is
a linearly independent set. Similarly, we define an or-
thonormal basis for R(M) by O = [0: o03...04] such that
R(O) = R(M) and

0"0 =1. ¢))

Again, notice that B is the rank of {m;}/-, and that B
equals r if {m}, is a linearly independent set. The or-
thonormal bases N and O need not represent realizable
filters. Let Py(-) represent the orthogonal projection op-
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erator onto R(M) in N space. Similarly, let P,(-) represent
the orthogonal projection operator onto R(V) in N space.
Define Py(0Q) = [Py(01)Py(02)... Py(0s)] and likewise
Py(N) = [Py(n,)Py(n,)... Py(n,)]. The projection of a
visual spectrum f onto R(V) is the information required
for accurate color reproduction as defined by the designers
of the reproduction system. From Egs. (1) and (7) this
required projection of a visual spectrum f onto R(V) is

Py(f) = NN'f. 9)

In the special case in which R(V) is the HVSS, Py(f) is the
fundamental of the spectrum f. The projection obtained
by using the scanning filters {m,}:-, is the projection
onto R(M):

Py(f) = OO7f. (10)
The projection of this onto the HVSS is
PyPy(f) = NNTOO'f. (11)

In the special case in which R(V) is the HVSS, P, Py (f) is
the estimated fundamental of the spectrum f and is the
relevant information about f that can be obtained from the
scanned data. Expressions (9) and (11) give the required
projection and the obtained projection, respectively.

A. Mean-Square Error
The difference between the two fundamentals Py(f) and
PyPy(f) is the difference between expressions (9) and (11):

e = NN7(I - 00")f. (12)

_It can be shown that

e=0< RM) D R(V), (13)

and perfect reproduction is possible if and only if the
space spanned by the scanning filters includes the space
to be spanned. See Theorem 1 of Appendix A for details
of the proof of expression (13). If f is part of a known
ensemble of signals, then it is reasonable to look at the
mean-square value of e. Assume that E[ff7] is known,
and let E[ff”] = R, the correlation matrix. Under these
assumptions the expression for the mean-square value of
the error is

E(lle]*] = Trace[N"(I - OOT)R(I - OOT)N].  (14)

For details, see Theorem 2 of Appendix A. This expres-
sion may not be simplified further unless assumptions are
made about the nature of R. For a given sample set, how-
ever, this error is easily computed and will be useful for
many who now use sample sets, anyway.

B. Bounds on the Error Expression
Bounds on error expression (14) may be obtained in terms
of the structure of the matrix R. It can be shown that

0 =< E[|le|f] = Trace R. (15)

For details, see Theorem 3 of Appendix A.

To obtain some heuristic understanding of the meaning
of these bounds, consider a simple example demonstrating
the extreme cases of zero error and of maximum error.
Let the space to be spanned be defined by the set v}

defined in Eq. (5) of Section 3. Let the scanning filter set
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be the set {m,}), defined in Eq. (6) of Section 3. Notice
that in this particular case the scanning filter set is or-
thonormal. The set {v,}}; is also orthonormal. Hence in
this case M = O and N = V. Simple matrix multiplica-
tion indicates that Efjle|*] = Ry, the value of the second
element on the diagonal of R. Let R be a diagonal matrix
with only one nonzero diagonal element. Let this element
be y. Then

Trace R = 7.

The case of zero error occurs when the nonzero element of
the diagonal of R is any element other than the second.
The maximum error occurs when the nonzero element of
the diagonal of R is the second. For example, this happens
when the ensemble of spectra for this synthetic example is
defined by

{fif.=u ifi=2, f =0else},

where u is a Gaussian random variable with variance o2
and mean m. The value of the maximum error in this
case is o + m2

From the above example and the proof of inequality (15),
it can be seen that the zero error occurs when the energy
in the signal that is in the space to be spanned is also in
space spanned by the scanning filters. In the special case
when the space that needs to be spanned is the HVSS, the
zero-error case will occur when all the energy in the signal
that is in the HVSS is also in the space spanned by the
scanning filters. Similarly, the maximum error occurs
when all the energy of the signal escapes the scanning fil-
ters but lies in the space to be spanned.

From the above observations it is clear that the correla-
tion structure of the signal determines the error to a large
extent. When nothing is known about the correlation
structure, it is common to assume that R is a scalar mul-
tiple of the identity matrix and that the signal power is
equally distributed in all directions. This assumption
implies that concentration of signal power in a particular
direction will not bias the error to make it maximum or
minimum, as in the cases just discussed. This leads to an
error measure that is demonstrated to be particularly use-
ful and is independent of the data set.

C. An Error Measure

In the particular case when R is a scalar multiple of the
identity matrix, i.e., when the spectrum f can be expressed
as a sequence of independent, identically distributed ran-
dom variables, the error expression is considerably simpli-
fied. With this assumption, the error expression can be
related to the g-factor measure. This assumption is often
made when no information is available about the signal
statistics and the random variables of the signal are
assumed independent of one another. It is a maximum-
ignorance assumption for signal estimation. Error ex-
pression (14) is then

Eflel] = oz{i (1- m"’(OTN)]}’ (16)

where o? is the variance of a single component of f and
A:(OTN) denotes the ith singular value of O’N. For de-
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tails, see Theorem 2 of Appendix A. It is appropriate to
mention that

A2(OTN) = cos?@,) i=1,...a, an

where 6, is the ith principal angle between R(V) and
R(M).® Note that

1-A20"™N) =0 i=1,...«, (18)

because 1 — A,2(O”N) i = 1,...a are the eigenvalues of
the quadratic form N7(I — OO”)N. Hence

0=XO0O"N)=1 i=1,...a, (19)

which implies that

0 = EfJlel?] = 0'2[:1 -3 A,-Z(OTN)] <c%.  (20)

i=1

Perfect reproduction is possible when

a= 2 MEHOTN) (21)

i=1
or
L(O™N) =1 i=1,...a. (22)

Note that the conditions for perfect reproduction are in-
dependent of the variance of the components of f. The
term « in expression (20) is the dimension of the space to
be spanned and is assumed invariate. The summation in
expression (20) may be used as a measure of the goodness
of the filters, because a high value of the summation indi-
cates a low error. A normalized measure of the goodness
of the filter set is

V(V,M) = [2 A?(OTN):' / . ©23)

i=1

The error is zero if and only if the set of filters is perfect
and Eq. (22) holds. Perfect reproduction implies and is
implied by

v(V,M) = 1. (24)

The error measure can be shown to be related to the prin-
cipal angles between the two subspaces, R(V) and R(M).
Principal angles are well known in numerical linear alge-
bra; this relationship is discussed in detail in Subsec-
tion 4.E.

D. Relationship with the g Factor

It can be shown that the measure of goodness defined in
Eq. (23) is related to Neugebauer’s g-factor measure. Spe-
cifically, this measure of goodness is the sum of the
q factors of the vectors o; divided by the dimension of
R(V). For details, see Theorem 4 of Appendix A. Thus
the sum of ¢ factors of the filters represented by O, an
orthonormal basis for the space spanned by the scanning
filters, is a valid measure of goodness for the set of filters
when the signal f is from an ensemble of independent,
identically distributed random variables. The sum may
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Fig. 2. Measure is the sum of g factors of orthogonal scanning
filters.

Fig. 3. Measure is not the sum of q factors of nonorthogonal
scanning filters. :

be normalized so that a maximum value of unity indicates
perfect reproduction. This normalized form is

)
v(V,M) = [Z q(oi)]/a. (25)
i=-]

Here the term q factor is used in a general sense to mean
the norm of the projection of the normalized vectors o;
onto the a-dimensional R(V). Neugebauer’s original defi-
nition of the ¢ factor implies the specific case where this
space is the three-dimensional HVSS.

For the measure to be independent of the particular set
of filters used to span the respective spaces, a necessary
condition is that the filters O be orthonormal. So, for ex-
ample, Z/.;q(m;) cannot be used instead of 38.,q(0,) as a
measure because filters with high values of |m;"m,| for
i # j may have high g factors but poor joint performance.
Ensuring that the filters O are orthogonal removes the
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effect of the correlation (lm,"m,| for i # j). To see that
the normalized sum of the q factors of the scanning filters
themselves is not a valid measure, consider the following
example (refer to Figs. 2 and 3 for illustration).

Let v; = [1,0,0]"and v, = [0,1,0]7 be the vectors repre-
senting a simple two-dimensional HVSS. Let m, =
(1,0,0]™ and m, = [0, cos(m/3), sin(m/3)]" be vectors repre-
senting the scanning filters. The normalized sum of the
q factors is 0.75. Now, suppose that another set of scan-
ning filters is chosen that spans the same space as the
first set. Suppose that the set is m, = [1,0,0] and that
m, = [2/V'5, [cos(n/3)]/V/5, [sin(n/3)]/V/5]. Notice that
this set of scanning filters is not orthogonal. The nor-
malized sum of g factors for this set is 0.925. Let

2
S(V,M) = > q(m,). (26)

i=1

Then ¢(V,M) can be seen to be dependent on the par-
ticular filters used and is not Just a function of the space
spanned by the filters, unless the orthogonality condition
is imposed on the filters. Hence it is not a valid measure
of goodness. Note that if the filters m; are narrow band
with little overlap, they are close to orthogonal. In this
case, ¢(V,M) may be a good approximation to v(V,M).
The measure v(V, M) avoids this problem entirely.

If each scanning filter is to be evaluated by itself and
not as part of a larger set of filters, the proposed measure
can be used to evaluate the set consisting of a single scan-
ning filter. In this case, the proposed measure is exactly
the same as the ¢ factor of Neugebauer, and Neugebauer’s
definition of the ¢ factor may be seen as a specific instance
of the measure defined in Eq. (23).

E. Relation to Principal Angles

As mentioned in Subsection 4.C, the idea of the principal
angles between two subspaces is well known in numerical
linear algebra. It is important to see the connection be-
tween the measure developed in this paper and this well-
established mathematical concept. The principal angles®
01,02,...,6, € [0,7/2] between R(M) and R(V) are defined
recursively by

cos(6y) = max max u’v = u,’v,, @en
u€R(V) vé R(IM)
subject to
[ull = v] = 1,
uu; =0 i=1,... k-1,

vivi=0 i=1,...

It can be shown that?®

cos(8;) = A,(OTN). (28)

Hence

v(V,M) = [2 cosz(E.v):l/a. (29)

i=1

Notice that the measure is large when the angles between
the subspaces are small, and it is interesting that a mea-
sure developed by using the mean-square error is consis-
tent with the observation that the error in the scanning
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process is larger if the angle between the subspaces
is larger.

F. Relation to L*a*b* Error

The mean-square error is not directly related to the
L*a*b* error, and it is possible that reconstructions with
low mean-square errors have high L*a*b* errors, and
vice versa. However, the average L*a*b* error over an en-
semble of signals used in colometric experiments is usually
highly correlated with the mean-square error. Heuristi-
cally this is reasonable. The L*a*6* transformation is
based on the tristimulus values; therefore small errors in
the tristimulus values usually will imply small L*a*b*
errors. Experience with the proposed measure has indi-
cated that small differences do not always yield errors in
the same order as the measure would indicate but that
larger differences always do. The results of the experi-
ments with several different ensembles demonstrate this
when data correction is used.

G. Data Correction

The error measure given in Subsection 4.C, with its rela-
tions to the ¢ factor and principal angles, can be consid-
ered a measure of the difference in the subspaces spanned
by A and M. As it is based on the assumption of indepen-
dent, identically distributed random variables, it may not
give a good estimate of the error that can be obtained for a
particular data set. However, it is still a good estimate of
the quality of the data obtained, because this quality de-
pends on the closeness of the spaces.

Given a set of color measurements for an ensemble with
known tristimulus values, it is common to derive the
3 X 3 matrix that premultiplies the measurements to give
a minimum mean-square estimate of the tristimulus val-
ues. This correction is dependent on the particular en-
semble. It is commonly performed in colorimetry when
the scanning filters are to be used on a well-characterized
data set. In the simulation experiments the fundamental
is estimated from the corrected data, where the corrected
data set consists of the linear minimum mean-square-
error approximations of the actual tristimulus values.
Such a fundamental will represent a signal that has the
corrected data as its tristimulus values. As demonstrated
in Section 6 below, the correction reduces both mean-
square and L*a*b* errors considerably. The corrected
scanning filter data set is

h = (ATRM(M”RM)"H(M”1), (30)

where R = E[ff”] is the sample correlation matrix of the
ensemble. The estimated fundamental is

Byf = [AATA) h, (31
which gives
Bof = [AATA)'ATRM(MTRM)-JMTE).  (32)

Since the transformation from fundamental to tristimulus
values is linear, the same expression is obtained by mini-
mizing the error between fundamentals. The corrected
data set always provides a lower mean-square error than
the uncorrected data because the corrected fundamental
is the minimum mean-square-error linear estimate of the
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true fundamental. Hence the mean-square error between
the corrected fundamental estimate and the true fun-
damental will be lower than that between the true fun-
damental and any other linear estimate, including the
uncorrected fundamental. It should be noted that data
correction is a way of making the best use of the data ob-
tained from a set of scanning filters if the correlation of
the data set is known. Data correction does not change
the data obtained in any fundamental manner, and the
color estimate can be only as good as the data obtained
with the set of scanning filters.

5. PERFECT FILTER SET

In Section 2 it was mentioned that it is possible that a
four-filter set can ensure perfect color scanning. An ex-
ample is presented here of an imperfect three-filter set
with fairly high individual q factors. It is demonstrated
that the addition of a fourth filter to the set makes the
set perfect, although the g factor of the fourth filter is less
than 0.25.

Consider the set of three all-positive filters shown in
Figs. 4-6. This set of filters has a measure, v(A,M), of
0.953. The filters have g factors of 0.873,_0.891, and
0.939.. Clearly this set does not span the HVSS and is not
a perfect set of scanning filters. The mean-square error
between the fundamental and the estimated uncorrected
fundamental for a 64-signal subset of the Munsell chip set
is 0.188, and the average AEy,, error for the same set is
3.4. The addition of a fourth filter to the set, shown in
Fig. 7, increases the measure to 1.0, and the resulting
four-filter set spans the HVSS. The q factor of the fourth
filter is 0.246. This is an example of a case in which the
q factor of a filter is not indicative of its appropriateness
as a scanning filter.

The fact that a perfect scanning-filter set can be ob-
tained by the addition of a filter with such a low g factor
indicates a problem for the design of such filter sets.
Consider the problem of selecting or designing scanning
filters from a specifiec_l set of filters, for example, the
Kodak Wratten set of gelatin filters. If only three filters
are to be used in an attempt to span the HVSS, then all
three must have high ¢ factors. This means that filter
candidates can be limited. If more than three filters are
to be used, then individual g factors are useless, and the
possible number of filters that must be considered is lim-
ited only by the total number in the set to be used for
construction. The optimal design of such filter sets is an
open problem.

6. EXPERIMENTAL RESULTS

Several ensembles were used to study the appropriateness
of the proposed measure, »(V,M). The mean-square error
and the AE|,, error were calculated on sets of signals from
a lithographic printer, a thermal printer, an ink-jet printer,
a color copier, and a 64-sample set of Munsell chips. The
first four ensembles are representative of the range of
printed materials that would be scanned in a publishing or
a copying application. The Munsell chip set is the only
one generated not by a three- or four-color process but by
a more diverse set of pigments. The light sources were
assumed uniform.
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The filter set that is shown here is representative of
several that were used in experiments during this study.
Filter set 1 is the set of Kodak Wratten gelatin filters Nos.
52,49 and 72B. Filter set 2 is the above set with a fourth
filter added, the Kodak Wratten gelatin filter No. 57.
Filter set 3 consists of five filters, the four in set 2 and
Kodak Wratten gelatin filter No. 30.

In the first experiment, the fundamental was recon-
structed directly from the uncorrected scanning-filter
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data. Hence the estimated projection was calculated as
Byf = PP, f = [AATA)ATMMTM) M), (33)

where M'f is the scanning-filter data. The mean-square
error between this reconstructed fundamental and the
true fundamental, Pyf, is represented by e, in column 3 in
Tables 1-5. The AEy,, error calculated on the basis of
tristimulus values estimated from Py, f,

APy f = [ATMMTM) (M), (34)

is represented by E, in column 4 in Tables 1-5. The data
manipulations in the first experiment hence are indepen-
dent of the particular data set.

In the second experiment, the scanning-filter data were
corrected for a best fit of the actual tristimulus values,
assuming knowledge of second-order signal statistics.
The AEL,, error with the use of Eq. (30) as the estimated
tristimulus values is represented by E, in column 6 of
Tables 1-5. The mean-square error between the recon-
structed fundamental in Eq. (32) and the actual fun-
damental is represented by e, in column 5 in Tables 1-5.
The mean-square errors e, and ez, the AEy,, errors E, and
E,, and the measure v(A,M) are tabulated in Tables 1-5
for the five sets of signals used.

Notice that the mean-square error and the AE|,, error
behave similarly in the two experiments. A conclusion is
that the average mean-square error is a reasonable indica-
tor of the average perceptual error for the ensembles stud-
ied here.

As the proposed measure is an accurate theoretical indi-
cator of mean-square error when the signal is composed of
independent random variables, it is possible that it may
not be so accurate an indicator of mean-square error when
the signal is correlated. In fact, this may be observed in
the uncorrected experimental results for filter set 2 for
the color-copier data set, the lithographic-printer data set,
and the ink-jet-printer data set. Here, the errors do not
monotonically decrease as the measure increases. It can
be seen that an increase in the number of filters in these
cases increases the error; this is because the data set is
correlated and the estimates used are not the best esti-
mates for the particular data set. Hence an increase in
the number of filters does not ensure that the additional
information is used appropriately for the particular data

0.6
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0.4f b
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0.2+

0.1F 4
. , . ‘ J
400 450 500 550 600 650 700

Fig. 7. Filter 4.
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Table 1. Munsell-Chip Set

Mean-Square AELab Mean-Square AELa
Filter Error, ey, E, Error, ey, E,
Set Measure Uncorrected Uncorrected Corrected - Corrected
1 0.858 0.188 16.41 0.0022 2.10
2. 0.913 0.152 15.73 0.0011 1.04
3 0.943 0.004 2.43 0.0002 0.49

Table 2. Color-Copier Data Set

Mean-Square AELab Mean-Square AErLa
Filter Error, e, E, Error, es, E,
Set Measure Uncorrected Uncorrected Corrected Corrected
1 0.858 0.050 12.96 0.00120 2.94
2 0.913 0.054 14.62 0.00005 0.49
3 0.943 0.002 2.72 0.00002 0.41

Table 3. Lithographic-Printer Data Set

Mean-Square AEvLa Mean-Square AELa
Filter Error, e, E, Error, e, E,
Set Measure Uncorrected Uncorrected Corrected Corrected
1 0.858 0.070 14.32 0.00125 2.56
2 0.913 0.073 15.38 0.00007 0.54
3 0.943 0.002 2.40 0.00001 0.31

Table 4. Thermal-Printer Data Set

Mean-Square AELab Mean-Square AELa
Filter Error, e, E, Error, e, . : E,
Set Measure Uncorrected Uncorrected Corrected Corrected
1 0.858 0.061 12.58 0.00086 2.65
2 0.913 0.049 11.74 0.00066 1.81
3 0.943 0.003 2.68 "~ 0.00007 0.87

Table 5. Inkjet-Printer Data Set

. Mean-Square AEvLa. Mean-Square AELq
Filter Error, e, - E, Error, ez, E,
Set Measure Uncorrected Uncorrected Corrected Corrected
1 0.858 0.096 15.89 0.0012 2.30
2 0.913 0.097 16.48 0.0005 1.21
3 0.943 0.011 6.84 0.0002 0.70

set. In contrast, it can be seen that the goodness mea-
sure is a reasonable indicator of the error when the data
set is corrected.

The observations indicate that the measure should not
be used for fine tuning a set of filters but can give a
good indication of performance for larger differences in
measure when knowledge of the signal statistics is not
available.

7. CONCLUSIONS

The qualities of a good measure were stated, and a mea-
sure was developed that satisfies most of these require-
ments. The proposed measure is a valid measure of the
goodness of a filter set with respect to the mean-square

error between the fundamental and its estimate when the
signal components are independent identically distributed.
If the signal components are not independent identically
distributed, the proposed measure is at least as good as the
q factor and does eliminate some of the disadvantages of
the ¢ factor. The proposed measure is a better indicator
of filter performance when the filter measurements are
corrected for a specific data set.

APPENDIX A

Theorem 1. e = 0 if and only if R(M) D R(V).
Proof: To prove the “if” portion of the theorem, note that

RM) 2 R(V)




1508 J. Opt. Soc. Am. A/Vol. 10, No. 7/July 1993

implies that?®
PvPMf = Pvf,
e = Pvf- PVpr= 0.

To prove the “only if” portion, note that it is equivalent to
showing that

R(0) D R(N),
which is in turn equivalent to
Null(N) 2 Null(0).

In the special case when R(V) is the HVSS, this means
that the black space of the human visual system includes
the black space of the scanning filters. Let f lie in the
black space of the scanning filters, f € Null(0), i.e.,

Ot =0.
As e = 0, this implies that NNTf = 0. This implies that
fTNN'f = (NTf)"™N"f = 0,
which implies that!®
Nf =0
and f € Null(N). This completes the proof.

Theorem 2. Elle|?] = o?{=2,[1 - AAHOTN)]Y when
EffT] = R = ¢2I.

Proof: The sum of the squares of the error components,
or the square error, is

llel? = [NNT(1 - OO™)f]"NN™(I - 00")f. (A1)

From Eq. (7) and the symmetric nature of the matrices
NN and 007, Eq. (A1) reduces to

lef? = £7(X - 0OT)NNT(I - 00")f,
which can be rewritten as
lel® = Trace{N"(I — 0OT)ee7(1 — O0")"(NT)T],
IfE[ff"] = R and R = &I, then
E[[lel’] = o* Trace[ N — 007")(I - O07)N].
This may be rewritten as
Eflle]?] = o? Trace(I, - NTOOTN).
This simplifies to
Ellelf] = 02{}51 [1- moTN)]}'
where A,(O"N) denotes the ith singular value of OTN.

Theorem 3. 0 < E[|le|’] = Trace R.
Proof:  The following inequality" is needed for the proof:

0 = Trace X"QX = Trace Q (A2)
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for positive semidefinite Q and X such that XX =
The maximum value is achieved when all the energy in Q
lies inside the space spanned by the column vectors of X
When all the energy in X lies outside the subspace
spanned by the columns of N,

Trace X"QX = 0.
Application of the inequality to error expression (14) gives
0 = Ef[le|’] = Trace(I - 0OT)R(I - 007, (A3)

because (I - OOT)R(I - 007) is positive semidefinite
and NN = L. Application of inequality (A2) to inequal-
ity (A3) gives the result.

Theorem 4. Z2,1%OTN) = Z1q(0).
Proof:

B B
2q(0) = 3 |Pyo)|f = Trace{[ P,(0)]"P,(0)}.
(=1 i=1

Now
’I‘race[Pv(O)] TPy(0) = Trace(O TNNTNNTO)
= Trace(O'NNTO).

Hence

8
2 q(0;) = Trace(O"N)(ON)T = Trace(NTO)(NTO)T,

i=1

as the eigenvalues of XX are identical to those of XTX.
This gives

B a
2q(0) = 3 AX(0TN).
im]

i=]

REFERENCES

1. H. J. Trussell, “Applications of set theoretic methods to color
systems,” Color Res. Appl. 16, 31-41 (1991).

2. J. B. Cohen and W. E. Kappauf, “Metameric color stimuli,
fundamental metamers and Wyszecki’s metameric blacks,”
Am. J. Psychol. 95, 537-564 (1982).

3. B. K. P. Horn, “Exact reproduction of color images,” Comput.
Vision Graphics Image Process. 26, 135-167 (1984).

4. B. A. Wandell, “The synthesis and analysis of color images,”
IEEE Trans. Anal. Mach. Intell. 9, 2-13 (1987).

5. M. J. Vrhel and H. J. Trussell, “Color correction using princi-
pal components,” Color Res. Appl. 17, 328-338 (1992).

6. W. A. Shapiro, “Generalization of tristimulus coordinates,”
J. Opt. Soc. Am. 56, 795-802 (1966).

7. H. E. J. Neugebauer, “Quality factor for filters whose spectral
transmittances are different from color mixture curves, and
Its application to color photography,” J. Opt. Soc. Am. 46,
821-824 (1956).

8. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns
Hopkins U. Press, Baltimore, Md., 1989).

9. T. Kato, A Short Introduction to Perturbation Theory for
Linear Operators (Springer-Verlag, New York, 1982), pp. 20-
21.

10. S. R. Searle, Matrix Algebra Useful for Statistics (Wiley,
New York, 1982), p. 63.

11. J. R. Magnus and H. Neudecker, Matrix Differential Cal-
culus with Applications in Statistics and Econometrics
(Wiley, New York, 1988) p. 211.




