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Traditional theory of security

Desirable protocols do not leak any information to non-trusted parties

Information-theoretically perfect secrecy:

a priori and a posteriori pdfs identical
− no information leakage to any adversary

Computationally perfect secrecy:

a probabilistic polynomial-time algorithm cannot distinguish between 
prior and posterior

− no information leakage to realistic adversary
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Problems not addressed by perfectly secret 
protocols

� Need to leak statistics in: 
� Markets
� Statistical databases
� Collaborative filtering

� Need another model for communities

� There is an existing market for personal information
− Safeway cards for 10% discount

− Extra for unlisted phone numbers

− Need an understanding of �amount of privacy� to study the value 
of privacy in this market
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An intentionally non-perfect protocol

� Randomization (probabilistic perturbation of data) 
� provides statistics to data collector, privacy to individual

� Current Uses: 
� Public health surveys (20+ years)
� Statistical database security (20+ years)
� IBM application for personal privacy protection on data collection 

websites (6 months)

� Potential Use, with Alice�s participation
� Interaction with parties neither trusted nor untrusted (e.g. virtual 

communities) 
� Collaborative filtering with privacy
� Negotiations
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Salary 
25,000

Salary 
40,000

salary stats. over many are accurate

-25,000 25,000

Randomization: continuous-valued

The output now decreases possible salary range: 

15-65K
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Randomization: binary-valued

HIV?
P(truth) = 2/3

P(lie) = 1/3
Yes

stats. over many are accurate

After the protocol, the possibilities are skewed

the answer is most likely to be correct
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The statistical database security problem

� Data collector asks for: 
fi(x1, x2, x3, �) = Ai

� Can simultaneously solve above

� (perfect zk protocols do not leak additional information about xi, but 
Ai are revealed; thus not a traditional cryptographic problem)

� If xi perturbed each time, the equations are inconsistent 
fi(x1+∆1i, x2 +∆2i, x3 +∆3i, �) = Ai+ ∆i

� Security and attack characterization open problem for 20+ years;
though many attempts (Denning, Adams, Duncan, � Landers). 
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Definition 1: “variable privacy” is the use of non-perfect 
protocols with Alice’s participation in choice of protocol 
parameters

Natural consequence of the definition of privacy in a world 
that includes non-perfect protocols

Variable Privacy
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Need a framework for �variable privacy�

� What is a measure of the privacy provided by 
randomization? 

� Can it be related to the �security�� of randomization?
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Our privacy model

1. Alice and Bob determine a level of information leakage, P(Y|X)

2. Bob requests a data point X from Alice, she reveals Y according to 
P(Y|X)

3. Bob provides something to Alice in return

� Dishonest Bob can use the information leakage to find out more 
than Alice intended

� The cost to Dishonest Bob is a measure of protocol privacy

Would provide a framework for �variable privacy�, and an 
understanding of the security of randomization, an open problem 
for 20 years in statistical databases
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Literature on information-theoretic measures of 
randomization (continuous-valued data)

D. Agrawal and C. Aggarwal (2001): Mutual information
I(X; Y) = H(X) � H(X|Y) = H(Y) � H(Y|X)

Measures change due to protocol and weights different 
probabilities differently 

Problem: Dependent on pdf of X. 

Natural fix: Channel capacity

Related to protocol security?

= max H(X) � H(X|Y) = max H(Y) � H(Y|X)
p(x)                            p(y)

C(X; Y)
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Our approach - 1

Shannon�s paper on secrecy: 
� A protocol is perfect 
⇔ the prior is identical to the posterior, i.e. 
⇔ it is not a channel (or is a channel with zero capacity)

Randomization is generally not perfect
⇔ randomization is a channel with non-zero capacity; 
(non-typical view of privacy/secrecy protocols)

Dishonest Bob wishes efficient communication over the 
channel
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Protocol as channel

Protocol Input: The truth value of �X has HIV�

Output: Perturbed value of the bit. 
Probabilities: of truth: 2/3, of lie: 1/3

Communication channel with probability of error 1/3
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Our approach - 2

Yao�s paper on computationally perfect secrecy: 

� A protocol is computationally secret 
⇔ prior and posterior computationally indistinguishable

Randomization is computationally imperfect

Computationally feasible attacks are (trivially) known to 
exist

Thus, their cost is important



Poorvi Vora/CTO/IPG/HP 
01/03 17

Our approach - 3

All communication over the protocol-channel (including 
attacks) is governed by Shannon�s theorems on 
communication in the presence of noise

We use the theorems to derive 
− the complexity of attacks for arbitrarily small errors, and 
− a corresponding privacy measure
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We have not seen the connection between 
− Shannon�s work on secrecy and communication in the presence 

of noise anywhere else, 
− though the connection between communication over a noiseless 

channel and secrecy has been published (Brassard and Giles)  
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Formally: Protocols as communication channels

ϕ: X → Y

ϕ(X) = Y

• X is the set of all possible values of user personal information, 
plaintext 

• Y is the set of all possible values of observable information from a 
single instance of the protocol or the attack, ciphertext

� Unlike channels in communication theory, the purpose of ϕ is to limit 
communication of X. 

� Φ = (X, P(Y|X), Y)
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Binary Symmetric Randomization Protocol

0

1 1

0

p = 1-q

q

q

p = 1-q
F(x) G(x)X Y

Φ = ( {0,1}, {0,1}, P(Y|X)

P(Y | X ) = q, Y = X; = 1-q, Y ≠ X 
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Typical query sequence for attack

message bit 1: female?
message bit 2: over 40?

plaintext bit 1: Losing Calcium? 
plaintext bit 2: Graying?
plaintext bit 3: Balding?
plaintext bit 4: Gaining weight?

Rate defined as 
log(no of possible messages)/plaintext length

Rate (efficiency) of above attack = log (4)/4 = 0.5 
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PRP

Definition 2: 
A plaintext is a string of bits each a function of bits in the 

database: p = (f1(a) a∈ A1⊂ D, f2(a) a∈ A2⊂ D, �fn(a) a∈ An⊂ D)

Definition 3:
A (M, n) probabilistically-related plaintext is a plaintext of 

length n having non-zero mutual information with M 
possible equal-length messages.  Its rate is log2M/n

p = (p1, p2, � pn) a (M, n) PRP 
⇔∃ m = (m1, m2, � mk) such that H (m|p) ≠ H(m)
(uncertainty in m decreases on knowing p)
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Attacks on randomization -
repeated plaintext

� An attack: asking the same question many times

� Can be thwarted by 
� never answering the same question twice, or 
� always answering it the same. 

� Plaintext repetition:
� corresponds to an error-correcting code word 

a a a a a a a
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Error

Known that: 
� tracker can reduce estimation error indefinitely 
� by increasing the number of repeated plaintext bits 

indefinitely; 
n → ∞ ⇒ εn → 0

� and that this is the best he can do with repeated 
plaintext

εn → 0 ⇒ cost per message bit = n/1 → ∞
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Is the following an attack?

� plaintext bit 1: �location = North�;

� plaintext bit 2: �virus X test = positive�;

� plaintext bit 3: �gender = male� AND �condition A = present�

If 
(location = North) ⊕ (virus X test = positive)
⇔ (gender = male) AND (condition A = present)

Then: A3 = A1⊕ A2; check-sum bit

Not easily recognized as attack
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DRP

Definition 4: A (M, n), log2M ≤ n deterministically-related 
plaintext (DRP) is a plaintext of length n completely 
determined by the values of the corresponding message 
string from M possible equal-length message strings. 

p = (p1, p2, � pn) a (M, n) DRP
⇔∃ m ∈ M, m = (m1, m2, � mk) and Λ such that 

p (γ) = Λ(m(γ)) ∀γ ∈ Γ
|M| = M
γ is an entity having property p, Γ the set of all entities

A DRP is a PRP
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Attacks

Definition 5: An (M, n) attack for binary protocol Φ is: 

� an (M, n) plaintext

� and an estimation map Ψ: Σn → Σk for
� estimating the message m(γ) from 

� the ciphertext (randomized bits) Φ(p(γ)). 

Its rate is log2M/n. 
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Code

Definition 6: An (M, n) code for set of messages M and 
binary channel Φ is: 

� A coding function f from M to code words of size n, 
f: M → Σn

� and a decoding function g: Σn → M for
� estimating the message m from 
� the randomized bits Φ(f(m)). 

Its rate is log2M/n. 
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Theorem 1
For a given set of message strings M, channel codes on 

set of messages M are DRP attacks and vice versa

� DRP attack is code: 
A DRP attack on Φ consists of 

� estimation function Ψ and 
� DRP map Λ; 

corresponds to code on channel Φ with 
� encoding function f = Λ, 
� decoding function g = Ψ

� Code is DRP attack: 
� encoding function Λ = f, 
� decoding function Ψ =g
� f(m) is plaintext because f a function, and hence all bits of f(m) 

are functions of m too
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Efficiency of attacks: repeated plaintext attack

� Definition 7: A small error attack is one in which εn → 0 
as n → ∞

� Plaintext repetition:
� corresponds to an error-correcting code word 

a a a a a a a
� probability of error is monotonic decreasing with n for n-symbol 

code words
� rate of code = 1/n
� sacrifice rate for accuracy; rate of small error attack → 0 

� Are DRPs more efficient?
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Reliable Attacks

Definition 8: A reliable attack of rate R is a small error 
attack of fixed rate R

Definition 9: A small error attack of asymptotic rate R∞ is a 
small error attack with rate → R∞

Do small error attacks of non-zero asymptotic rates exist? 

Do reliable attacks exist? 
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Shannon (1948): Channel Coding Theorem

Codes exist for reliable transmission at all rates below 
capacity 

A channel cannot transmit reliably at rates above capacity. 
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Application of channel coding theorem requires a 
lemma, 

− because channel coding defined for any set of messages, 
− but DRP attacks only defined on equal-length messages

Lemma: If a sequence of (2Rn, n) codes with εn → 0 
exists, so does such a sequence on any sequence of 
messages {Mn} of lengths {2Rn}

Proof: Use the one-to-one correspondence between the 
messages, it preserves error and rate

Theorem 2: Existence of reliable DRP attacks
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� Forney (1966): Existence of polynomial-time encodable
and decodable Shannon codes

� Spielman (1995): Construction of linear-time encodable
and decodable codes approaching Shannon codes

⇒ Corollary: Construction methods for linear time DRP 
attacks with k/n approaching C while εn → 0 

Corollary: Computability of reliable DRP attacks



Poorvi Vora/CTO/IPG/HP 
01/03 35

Converse of channel coding theorem and 
reliable DRP attacks 

� Similarly, converse of channel coding theorem 
implies tight upper bound on rate of reliable DRP 
attacks

� But not enough: what about other attacks: 
� PRP attacks
� small error attacks
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Theorem 3 
The asymptotic rate of a small error PRP attack is 

tightly bounded above by protocol capacity
log2M = nRn = H(mn) = H(mn|ϕ(p1),...ϕ(pn)) + I(mn; ϕ(p1), �ϕ(pn))

PRP attacks are not all channel codes, but
Fano�s inequality holds even when p not a function of m: 

H(mn|ϕ(p1),...ϕ(pn)) ≤ 1 + nRnεn

Further, even when p not a function of m, 
I(mn; ϕ(p1), ϕ(p2), �ϕ(pn)) ≤ ΣiH(pi) - ΣiH(ϕ(pi)|pi) ≤ nC

Hence, 
nRn ≤ 1 + nRnεn + nC

and, 
Lim n →∞ Rn ≤ Lim n →∞ (1/n + Rnεn + C)

Lim n →∞ εn = 0 ⇒ R∞ ≤ C
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Theorem 4
The asymptotic length of plaintext per message for a 

stationary message sequence and a small error attack is 
tightly bound below by message entropy/protocol capacity

Use source-channel separation idea of source-channel 
coding theorem 

� Bound can be achieved from above: 
Given ∈ and δ

� possible to find n such that n messages can be represented by 
at most 

n(H(m) + ∈ C(Φ)/2) bits 
With error at most δ/2 (source coding theorem)
� Using a good code, possible to design a DRP attack with rate 

C(Φ) - ∈ C(Φ)/2 (H(m)/C(Φ) + ∈ ) and error at most δ/2 (channel 
coding theorem)

⇒ ∃ N, s.t., ∀ n > N, ∃ DRP with εn < δ, plaintext length ≤ H(M)/C(Φ) + 
∈
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Theorem 4
The asymptotic length of plaintext per message for a 

stationary message sequence and a small error attack is 
tightly bound below by message entropy/protocol capacity

• H(M)/C(Φ) is a lower bound: 
Suppose possible that 
given δ, ∃ N, s.t., ∀ n > N, ∃ PRP with:

� εn < δ, 
� plaintext length ≤ n(H(M)/C(Φ) - ∆) - ∈ n, ∆ > 0

From Theorem 3, rate < C(Φ) + ∈ n

⇒Average message length < H(M) - ∆C(Φ) + ∈ n(H(M)/C(Φ)
- ∆) - ∈ n(C(Φ) + ∈ n) 

Violates source coding theorem
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Proposed measure of privacy of randomization

The privacy of randomization is the tight lower bound on 
the asymptotic length of plaintext per message, per bit of 
message entropy, for a stationary message sequence 
and a small error attack 

Corollary: Privacy (Φ) = 1/C(Φ)
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Channel capacity is the appropriate protocol 
measure

� independent of input pdf

� provides weighting for different probability distributions

� is also security measure

� connects to a measure used in data mining (mutual 
information, Agrawal and Aggarwal, 2001)
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Application: Binary Symmetric Protocol

0

1 1

0

p = 1-q

q

q

p = 1-q
F(x) G(x)

C = 1 + plog2p + (1-p)log2(1-p)

= 0 if p = 0.5; 

≈ 4β2/ln2 if p = 0.5 ± β; β << 0
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Application to binary randomization

Binary symmetric protocols for small bias β have channel 
capacity O(β2). 

Corollary: Plaintext length required, per bit of message 
entropy, for a small error attack in the binary 
randomization protocol with small bias β is O(1/β2) and 
independent of the error

The privacy of binary randomization with small bias β is 
O(1/β2) 
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We have shown that

Dishonest Bob can do better by increasing the number of 
points combined in a single query

i.e. there exist attacks for which  

n → ∞ ⇒ εn → 0
εn → 0 ⇒ n/k → ∞

There is a tight lower bound on the limit of n/k such that 
n → ∞ ⇒ εn → 0

i.e, (n → ∞ ⇒ εn → 0) ⇒ lim n/k > 1/C

\
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Unlike other work

� Our bound is independent of error, i.e. there is a finite
number of plaintext bits required per message bit for 
arbitrarily small error

� We connect security theory to statistical techniques for 
privacy protection

� We use Shannon�s channel coding theorem to design 
exceptionally powerful attacks, and to bound their 
efficiency 
� (only the source coding theorem has been used so far for 

cryptography and for anonymous delivery)
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The variable privacy big picture

� Alice can use randomization as a privacy protocol
� designing the channel capacity 
� based on knowledge that error correcting codes are attacks

� Dishonest Bob cannot approach rates higher than 
channel capacity

� Randomization is a game between Alice and Bob

� In this world, maximum privacy exists when Alice gets 
maximum benefit for a piece of revealed information
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Further questions, variable privacy

� What are best strategies for the user in different 
conditions in a variable privacy scenario? 

� Are there structures that are protected, and structures 
that are revealed, with various randomization protocols? 



Poorvi Vora/CTO/IPG/HP 
01/03 66

Acknowledgements

Umesh Vazirani, UC Berkeley
� for the original suggestion to use randomization for privacy 

protection and economic valuation of privacy
� for spirited discussions
� for an observation leading to the definition of DRP attacks

Gadiel Seroussi, HPLabs.

Cormac Herley, Microsoft Research


