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Abstract

Recently proposed voter-verifiable protocols provide encrypted paper receipts to voters, who may
later check that these receipts are in the electronic ballot box. This paper describes an enhancement that
allows the voter to electronically transmit, from the polling booth, her encrypted receipt to an external
verifier, who may perform the check on her behalf. It uses CAPTCHAs (techniques whose security
depends on the hardness of an AI problem) to enable the voter to be certain that the receipt has been
securely deposited with the external verifier. This approach presents several advantages: the voter is not
required to do anything outside the polling booth, no receipts are needed after polling, and all receipts can
be checked. Additionally, an audio-based format is an easy extension for those with visual disabilities,
and it is anticipated that a public already familiar with CAPTCHAs will find the enhancement easy to
use.

1 Introduction

The past few years have witnessed a number of voter-verifiable voting techniques (for example: [3, 4, 5, 2, 6])
that can convince a voter that (a) her vote was cast as intended, and (b) all votes were counted as cast. These
techniques provide a level of integrity and verifiability not present in previous techniques, because they do
not require the voter to trust any entity – polling machine, election official, or third party. A unique aspect of
these protocols is a paper receipt received by the voter that contains her vote in encrypted form. The voter
may check that her encrypted receipt is in the public electronic bulletin board that forms the ballot box. This
receipt is either encrypted [3, 5, 2] or incomplete [6] and therefore maintains vote privacy.

Unfortunately, this idea of letting a voter take her receipt out of the polling booth for individual verifi-
cation has some drawbacks. First, the verifiability of these schemes requires voter participation: if voters
choose not to check the presence of their receipts on the bulletin board, it is not possible to catch a cheating
or defective polling machine. Second, in some of the published schemes, voters are first presented with
complete ballots but are asked to leave with only a portion of the ballot for verification. However, it may be
physically difficult to force voters to leave with only part of the ballot as instructed. Third, the receipts are
themselves susceptible to abuse from malicious voters: even if a forged receipt can be identified, the labor or
legal costs of handling false claims can be prohibitive. Finally, the act of allowing a voter to walk out with a
receipt connected to her vote, even though encrypted, and the requirement that the voter follow up with the
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checking of the vote, even if helped by someone else, is distinct enough from the current voting process to
pose a challenge to public acceptance and widespread use.

This paper explores the use of an additional primitive – a CAPTCHA [8] – to securely (and electronically)
transmit the receipt to one or more third-party verifiers, who check for the presence of the receipt on the
public bulletin board. The voter is ensured that the verifier received the receipt correctly because the receipt
is displayed using a format and images agreed upon ahead of time by the voter and the verifier. This shared
information, as we will see, is both reasonably assumed to be known only to the verifier, and hard to reverse-
engineer by the polling machine (without solving a hard AI problem). The use of CAPTCHAs in this manner
addresses the problems pointed out above with receipts, and in addition, allows on-the-spot detection of
an improper electronic receipt. While several schemes have recently contributed to simplifying the user
interface (ballot format) for voter-verifiability [5, 7], we are, however, not aware of any work that attempts
to transmit the receipt electronically to a verifier, or uses CAPTCHAs in the security mechanism.

Although CAPTCHAs can be applied to a variety of voting protocols, this paper, for ease of exposi-
tion, explores the use of this primitive with two well-known protocols: Punchscan [2] and ThreeBallot [6].
The CAPTCHA-enhanced versions of the protocols are referred to here as C-Punchscan and C-ThreeBallot
respectively.

The integrity of Punchscan depends on (a) some voters checking their receipts and (b) the unforgeability
of the paper receipts. C-Punchscan, on the other hand, makes it possible to electronically check the presence
of all receipts on the bulletin board without any voter follow-up, and sidesteps the issue of unforgeability
because no receipts are given to voters. Instead, the integrity depends on the unforgeability of digital signa-
tures and on the security of the CAPTCHA primitive. The privacy of Punchscan depends on the security of
the encryption and commitment schemes used. So does the privacy of C-Punchscan. That is, the use of the
CAPTCHA primitive does not affect the privacy properties of Punchscan.

We demonstrate the challenges in retaining the integrity and privacy of ThreeBallot. The integrity of
the original ThreeBallot scheme depends on the voting machine not knowing the voter’s choice of receipt
from among the three ballots cast by each voter; however this condition cannot be satisfied when the polling
machine sends the receipt to the verifier. Hence, C-ThreeBallot requires that the machine send all three
ballots, each to a verifier. To preserve the involuntary privacy of voting, the voter may not choose the
verifiers, as their collusion will reveal the vote. The collusion of a single verifier with the voting machine
can change the vote, hence the integrity of ThreeBallot is considerably weakened, and it is not as well-suited
to the addition of the enhancement as is Punchscan. Further, additional cryptographic checks are required to
ensure that the verifiers are randomly chosen by the machine, defeating the original purpose of ThreeBallot
– to obtain a voting scheme that did not use cryptography.

Our use of CAPTCHAs is not without some weaknesses. First, it requires continuous maintenance of
secure connections between polling machines and verifiers. Second, a defective or malicious verifier can
interfere with voting by sending back incorrect CAPTCHAs.

This paper is organized as follows. Our approach is described in Section 2. Section 3 contains formal
statements of protocol properties, and concluding remarks are presented in Section 4.

2 How it Works

Before we describe our enhancements, we provide an overview of PunchScan, ThreeBallot, and CAPTCHAs.
We use the term Election Authority (EA) in the usual manner to mean the organization that oversees the
polling, the voting machines, and the counting. Our enhancements have the following additional require-
ments:
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• Verifier. A verifier is an entity to whom an electronic version of the voter’s receipt is sent from the
polling booth. In C-Punchscan, a single receipt is sent to a single verifier who might be chosen by
the voter or at random by the machine. In C-ThreeBallot, the three ballots are sent to three different
verifiers, randomly assigned by the machine.

• Polling machine. To enable communication with the verifier, our enhancement requires a polling
machine to have the ability to (a) display an image (and play audio for the visually-impaired), and (b)
set up a secure connection with servers maintained by the verifiers.

2.1 Overview of Punchscan

We describe Punchscan for the simple case of two candidates. The Punchscan ballot consists of two layers,
one below the other. The upper layer contains a one-to-one map from the candidates to a set of dummy
variables, such as letters of the alphabet. The lower layer contains another map, from the dummy variables
to a position in a list – such as left and right (see Figure 1). A voter marks the position (and dummy variable)
of the candidate of her choice. Because of a hole in the upper layer, the mark appears on both layers. Thus,
both layers contain information on the vote, however, neither, by itself, provides information on the choice
of candidate.

4/9/2007 CS284/Spring07/GWU/Vora/Entropy 1
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Figure 1: A Punchscan Ballot. From left to right: upper layer of unmarked ballot; lower layer of unmarked
ballot; a marked ballot for Candidate Obama with layers superimposed; upper layer of marked ballot; lower
layer of marked ballot

A voter chooses a single layer as the record of her vote. The other layer is destroyed. The single layer
is scanned into the polling machine, and displayed on a public bulletin board. It is also the voter’s receipt.
The EA is able to decrypt the ballots as it possesses the mappings from position to candidate for each serial
number; the decrypted ballots are displayed on the public website. The original set of ballots is shuffled, and
the serial numbers stripped, to preserve anonymity.

The printed ballots are audited for correctness through the opening of the mappings (stored and commit-
ted to) for each of half of the total number of ballots. These audited ballots are treated as spoiled and are not
used for the election. The decryption process is audited through the use of a process similar to randomized
partial audits of mixes. These details are described in [5].

2.2 An Overview of ThreeBallot

The ThreeBallot ballot consists of the list of candidates, arranged one below the other in a fixed, pre-defined
order, and three columns next to the candidates. To choose a candidate, the voter marks two of the three
columns corresponding to the candidate. For all other candidates, the voter marks exactly one column. The
three columns are separated out and cast separately, each as a ballot. Each ballot has an associated serial
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number, though the serial numbers are independent. The voter scans in all three and takes exactly one home
with her.

All ballots are posted online with the corresponding serial numbers. Each voter checks if the ballot she
took away is on the bulletin board. She does not know if the other two ballots are there too (and unchanged),
but because the EA cannot guess which piece she took home with her, it will be caught with high probability
of it changes even a few ballots. Anyone can tally the votes – the winner will be the candidate with the most
marks. The number of votes obtained by each candidate is the number of marks less the total number of
voters. The integrity of this scheme depends on the scanner and the EA not being able to anticipate which
ballot will be kept by the voter.

2.3 An Overview of CAPTCHAs

In the general Human Interactive Proof (HIP) problem, the goal is to distinguish between a human and
machine using a simple test. By focusing on exceptional cognitive abilities such as visual perception, a HIP
tries to place a high barrier to machine duplication of human ability. A CAPTCHA is an application of this
notion to security problems: it is a security primitive whose hardness assumption is based on a problem in
Artificial Intelligence [8]. The AI problems are somewhat distinct from the usual hard problems used in
cryptographic schemes (problems in algorithmic number theory) because standard approaches to breaking
them require the use of a large data set to learn from. The applications of CAPTCHAs have also hence been
different – they have typically been used in situations where the security depends on the machine not solving
the hard AI problem in real time. Thus, while a typical cryptographic scheme is required to be unbreakable
into the future, it is usually enough if a CAPTCHA cannot be broken in a few minutes.

A popular use of a CAPTCHA is to prevent bots from logging onto sites or accessing certain types of
online services. In this application, a string of text is converted, by a program, into an image from which a
human may recognize the text, but a program not knowing the text may not. Before being allowed to log
in, a user is required to obtain the string from the image – an easy task for a human, but difficult for a bot.
This problem can be made quite difficult by incorporating not simply visual recognition, but also face and
theme recognition, common historical knowledge (for example, identities of presidents), or emotions (happy
vs. sad) in the images. Further, one may similarly use audio-based CAPTCHAs that exploit human abilities
to recognize speakers and intonations in a way that has been out of reach for machines.

In this paper, in the most typical application, we require the verifier to generate a composite image
representing the voter’s receipt, using a specific format and set of images known to the voter. We require
that the computer providing the composite image to the voter not be able to determine the format and set
of images to produce another valid composite image representing another receipt. Our requirement on the
strength of the CAPTCHA is in fact less stringent than the customary login applications seen today: we only
require that the machine be unable to forge a vote; a machine could understand the vote, but should not be
able to construct one.

2.4 The Enhanced Protocol: A Sketch

Our protocol, described in general for both C-Punchscan and C-ThreeBallot, proceeds as follows:

Step 1: Prior to election.

• The EA posts information about candidates and verifiers, polling sites and the election schedule.

• The voting machines are programmed to open secure connections to verifiers.
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• Each verifier creates and maintains a secret mapping g between a large set V of (large) random veri-
fication numbers and a set F of internally-generated formats and image sets that the trustee will use.
For simplicity, we refer to g(v), v ∈ V as a format.

• The polling site is divided into two sections – the verifier area, and the voting area.

• Each verifier contributes several tickets, each ticket corresponding to a single value v ∈ V . Each ticket
contains printed on it the value v and sufficient information for a human to recognize a receipt image
in format g(v).

• The tickets are loosely placed in a box as would raffle tickets prior to a drawing. For Punchscan, the
tickets for each verifier are placed in separate boxes. For ThreeBallot, tickets of all verifiers are placed
in a single well-shuffled box.

Step 2: The voting procedure.

• A voter enters the polling site where the verifiers are located and draws a ticket from the ticket box of
any one verifier of her choice for Punchscan, and three tickets from the single box for ThreeBallot.

• The voter is given a paper ballot in much the same way as with the original PunchScan or ThreeBallot
protocols, and directed to a voting booth where she will cast her vote.

• The voter makes her selections and scans in her ballot.

• The machine presents a summary ballot containing the two layers (for Punchscan) or the three ballots
(for ThreeBallot). Also presented is a textfield where the voter can enter her ticket number(s) v.
A function (not necessarily one-way) of the ticket number(s) identifies the verifier(s) to the polling
machine.

• The voter enters the ticket number(s) present on her ticket(s). For Punchscan, she also chooses a layer.

• The machine then sends the digitally signed chosen layer (for PunchScan) or all three ballots (for
ThreeBallot) to the associated verifier(s) using the secure connection(s).

• The verifier server(s) checks the signature of the polling machine on the receipt. It then constructs a
composite image of the receipt using the format g(v), and transmits that back to the voting machine.
The server also digitally signs the composite image.

• The machine displays the received image(s) to the voter, along with an option to “confirm” or finalize
the vote.

• The voter sees her summary layer in the image returned (for Punchscan), or the three ballots in the
three images returned (for ThreeBallot), in the corresponding format(s) and confirms the vote. Note
that, for ThreeBallot, she needs check only one of the three pieces at random, as the polling machine
would not know which one she would check.

Note that a disgruntled verifier could hold up this protocol by sending an incorrect composite image.
A disagreement of this kind can be resolved on-the-spot through human viewing of the ticket, receipt and
composite image, and the checking of digital signatures.

Step 3: Post-poll checking and counting.

• Each verifier checks that each receipt is on the poll website. Any discrepancies are resolved through
the checking of digital signatures.
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• Vote tallying and post-counting audits proceed according to the original scheme.

We note that, as with the original protocols, a voter may waive the option to verify her vote, in which
case she would choose not to pick up a ticket. As with the original versions of Punchscan or ThreeBallot,
if even a small number of concerned voters engage in using verifiers, the probability of a cheating polling
machine being caught is very high.

The CAPTCHAs Used
In this section we show some sample CAPTCHAs for C-Punchscan and C-ThreeBallot. We request

the reader to reserve judgement on the breakability of these particular CAPTCHAs – they are merely for
illustration. Far harder CAPTCHAs can be designed using the limits of human vision.

We first show how C-Punchscan can mimic the use of Punchscan. Consider the ticket in Figure 2.4. It
depicts a ticket number shown in a particular CAPTCHA-style font. A voter with this ticket can assume that
only she and the verifier know that font, and that the font is difficult to reverse-engineer.

Figure 2: C-Punchscan Ticket

If, in the manner of Punchscan, the voter chooses the top-layer, the top-layer is sent in plain text to the
verifier by the machine. The verifier then returns the image displayed in Figure 2.4. One can see that the
image is a replica of Punchscan’s top layer: it contains the ticket number, the mapping from candidates to
dummy variables, and the position of the encircled vote. Likewise, if the voter instead chose to keep the
bottom, the image displayed in Figure 2.4 is returned by the verifier, showing the ticket number and the
selection made.

Figure 3: C-Punchscan Composite Image Returned: Top Layer

The particular CAPTCHA technique above uses distorted fonts, and is the most widely used CAPTCHA
for login applications. For illustration, our example for C-ThreeBallot shows how pictures can be used.
Figure 2.4 shows one of the three tickets on the left. The ticket contains a description of a visual theme, in
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Figure 4: C-Punchscan Composite Image Returned: Bottom Layer

this case an “outdoors” picture of a candidate implies a mark in the column corresponding to that candidate.
On the right, are two pictures forming the composite image returned by the verifier. It shows that the ballot
the verifier received was a mark for Obama (the other image is not outdoors). Note that the serial number of
the receipt may be displayed using distorted fonts as well. Note also that the serial number of the receipt and
the ticket number should be independent to prevent information about the vote leaking through the ticket.

467935
Your candidate: outdoor picture

Ticket Sample ballot image

539042

Figure 5: C-ThreeBallot Receipt Showing a Single Mark For Candidate Obama

3 Formal Statements

In this section, we state more formally our assumptions and the properties of C-Punchscan and C-
ThreeBallot. For reasons of space, we do not provide proofs for the properties.

Let R represent the set of all possible receipts (sent to the verifier), and r ∈ R a single receipt. Let R be
the set of all composite images (returned by the verifier). Let ρ(r, g(v)) ∈ R represent the composite image
corresponding to receipt r in format g(v).

We now define the security primitive. First, the primitive must be checkable by a human. That is,
given a ticket numbered v, describing the format g(v), a human must be able to recognize composite image
ρ(r, g(v)), as being r in format g(v) for all possible values of r.

Assumption 1[HUMAN CHECKABILITY] The mapping g : V → F is humanly checkable. That is, ∀v ∈ V ,
∀r ∈ R, ρ(r, g(v)) is read as being the receipt r, printed in format g(v), by a human with ticket numbered v.
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The security requirement for the primitive is that, given ρ(r, g(v)), the computer not be able to produce
an image that is accepted as ρ(r′, g(v)), for r 6= r′ by a human.

Definition 1[SECURITY BREAK] A program breaks the security of mapping g : V → F if, for some pair
r, r′ ∈ R, r 6= r′, and some v ∈ V , given v, r, and ρ(r, g(v)), it can produce a composite image that is read
as being the receipt r′, printed in format g(v), by a human with ticket numbered v.

Assumption 2 [SECURITY] A program that breaks the security of g can be used to solve a hitherto unsolved
AI problem.

Property 1 [COMPOSITE IMAGE RECOGNIZABILITY] If the voter is using ticket v, the verifier responds
correctly to the receipt r, and the Polling Machine displays ρ(r, g(v)) correctly, the voter will recognize
ρ(r, g(v)) as representing her receipt r using format g(v).

Property 2 [SECURE DELIVERY] If Assumption 2 holds, a voter with ticket v is assured that her receipt r
has reached the verifier if she views a composite image that she reads to be receipt r in format g(v).

Property 3 [NONREPUDIATION] If the digital signature scheme used is secure, the verifier cannot later deny
that it sent a composite image that it did send.

Property 4 [C-PUNCHSCAN] C-Punchscan provides the same integrity as Punchscan if assumption 2 holds.

Property 5 [PRIVACY, C-PUNCHSCAN] C-Punchscan provides the same privacy as Punchscan.

Property 6 [INTEGRITY, C-THREEBALLOT] If assumption 2 is true, and all verifiers are assumed honest
(that is, no verifier colludes with the EA to change the vote), C-ThreeBallot provides the same integrity as
ThreeBallot.

Property 7 [PRIVACY, C-THREEBALLOT] C-ThreeBallot provides the same privacy as ThreeBallot if the
Polling Machine chooses verifiers at random.

Property 8 [INTEGRITY VULNERABILITY, C-THREEBALLOT] A single verifier can collude with the EA
to change any number of its votes in C-ThreeBallot.

4 Conclusions and Future Work

The use of CAPTCHAs in voting is promising because CAPTCHAs have been widely-used to provide secu-
rity in other protocols used by humans. A promising avenue for future work is the incorporation of several
different types of CAPTCHAs, such as audio-based CAPTCHAs, for ease of use for those with disabilities.
Such a CAPTCHA might work as follows. The ticket consists of an MP3 file identifying to the voter a
particularly stylized voice (for example, deep female voice with a strong accent). The verifier then returns a
description of the ballot-portion in that voice. Thus, the difficulty for the machine is to create a fake vote out
of that voice. Because a multitude of voices can be used, the audio snippet cannot be spliced out of previous
votes.
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